The best idea to take care of the earth, by recycling, industrial waste


Shipping container architecture is a form of architecture using steel intermodal containers (shipping containers) as structural element. It is also referred to as cargotecture, a portmanteau of cargo with architecture".

The use of containers as a building material has grown in popularity over the past several years due to their inherent strength, wide availability, and relatively low expense. Homes have also been built with containers because they are seen[who?] as more eco-friendly than traditional building materials such as brick and cement

Advantages

Customized
Due to their shape and material, shipping containers can be easily modified to fit many purposes.
Strength and durability
Shipping containers are designed to be stacked in high columns, carrying heavy loads. They are also designed to resist harsh environments, such as on ocean-going vessels or sprayed with road salt while transported on roads. Due to their high strength, shipping containers are usually the last to fall in extreme weather, such as tornadoes, hurricanes, and tsunamis.

Modular
All shipping containers are the same width and most have two standard height and length measurements and as such they provide modular elements that can be combined into larger structures. This simplifies design, planning and transport. As they are already designed to interlock for ease of mobility during transportation, structural construction is completed by simply emplacing them. Due to the containers' modular design, additional construction is as easy as stacking more containers. They can be stacked up to 12 units high when empty.

Labor
The welding and cutting of steel is considered to be specialized labor and can increase construction expenses, yet overall it is still lower than conventional construction. Unlike wood frame construction, attachments must be welded or drilled to the outer skin, which is more time consuming and requires different job site equipment.

Transport
Because they already conform to standard shipping sizes, pre-fabricated modules can be easily transported by ship, truck, or rail.

Availability
Because of their wide-spread use, new and used shipping containers are available across the planet.

Expense
Many used containers are available at an amount that is low compared to a finished structure built by other labor-intensive means such as bricks and mortar — which also require larger more expensive 

foundations.
Eco-friendly
A 40 ft shipping container weights over 3,500 kg. When upcycling shipping containers, thousands of kilograms of steel are saved. In addition when building with containers, the amount of traditional building materials needed (i.e. bricks and cement) are reduced.

Disadvantages
Temperature
Steel conducts heat very well; containers used for human occupancy in an environment with extreme temperature variations will normally have to be better insulated than most brick, block or wood structures.

Lack of flexibility
Although shipping containers can be combined together to create bigger spaces, creating spaces different to their default size (either 20 or 40 foot) is expensive and time consuming. Containers any longer than 40 feet will be difficult to navigate in some residential areas.

Humidity
As noted above, single wall steel conducts heat. In temperate climates, moist interior air condenses against the steel, becoming clammy. Rust will form unless the steel is well sealed and insulated.
Construction site
The size and weight of the containers will, in most cases, require them to be placed by a crane or forklift. Traditional brick, block and lumber construction materials can often be moved by hand, even to upper stories.

Building permits
The use of steel for construction, while prevalent in industrial construction, is not widely used for residential structures. Obtaining building permits may be troublesome in some regions due to municipalities not having seen this application before. However, in the US certain shipping container homes have been built in outside of the city's zoning code; this meant no building permits were required.


Treatment of timber floors
To meet Australian government quarantine requirements most container floors when manufactured are treated with insecticides containing copper (23–25%), chromium (38–45%) and arsenic (30–37%). Before human habitation, floors should be removed and safely disposed. Units with steel floors would be preferable, if available.

Cargo spillages
A container can carry a wide variety of cargo during its working life. Spillages or contamination may have occurred on the inside surfaces and will have to be cleaned before habitation. Ideally all internal surfaces should be abrasive blasted to bare metal, and re-painted with a nontoxic paint system.

Solvents
Solvents released from paint and sealants used in manufacture might be harmful.
Damage
While in service, containers are damaged by friction, handling collisions, and force of heavy loads overhead during ship transits. The companies will inspect containers and condemn them if there are cracked welds, twisted frames or pin holes are found, among other faults
close
==[ Klik disini 1X ] [ Close ]==